AXBOROT TIZIMLARIDA KIRISHNI ANIQLASH MODELLARINI ISHLAB CHIQISHNING AQLLI USULLARI

##article.authors##

  • Begimov O‘ktam Ibragimovich ##default.groups.name.author##
  • Jovliyev Ulug‘bek Davronovich ##default.groups.name.author##

##semicolon##

Kalit so‘zlar: Axborot tizimlari, kirishni aniqlash modellar, avtomatik qurish, aqlli usullar, mashinani o‘rganish, chuqur o‘rganish, anomaliyalarga asoslangan model, imzolash asosidagi model, ma’lumot to‘plash, ma’lumotlarni qayta ishlash, modelni baholash va optimallashtirish, xavfsizlik, ruxsatsiz kirish, hujumlardan himoya.

##article.abstract##

Annotatsiya: Ushbu maqola axborot tizimlarida kirishni aniqlash modellarini 
avtomatik  ravishda  qurishning  aqlli  usullarini  tahlil  qiladi.  Kirishni  aniqlash 
modellarining  ikki  asosiy  turi-imzolash  asosida  va  anomaliyalarga  asoslangan-
keltirilgan.  Maqolada  avtomatik  model  qurish  jarayonining  to‘rt  asosiy  bosqichi: 
ma’lumot  to‘plash,  ma’lumotlarni  oldindan  qayta  ishlash,  model  qurish  va  uning 
baholanishi  va  optimallashtirilishi  ko‘rib  chiqiladi.  Mashinani  o‘rganish  va  chuqur 
o‘rganish  kabi  zamonaviy  texnologiyalar,  shuningdek,  natijalarga  asoslangan 
o‘rganish  usullari  yordamida  kirishni  aniqlash  samaradorligini  oshirish  mumkinligi 
ta'kidlangan.  Ushbu  tadqiqot,  axborot  tizimlarining  xavfsizligini  kuchaytirish  va 
ruxsatsiz kirishlarni oldini olishda zamonaviy yechimlarni taklif etadi. 

##submission.citations##

Foydalanilgan adabiyotlar.

1. Bishop, C. M., Pattern Recognition and Machine Learning. Springer, 2006.

2. Goodfellow, I., Bengio, Y., & Courville, A., Deep Learning. MIT Press, 2016.

3. Hodge, V. J., & Austin, J., “A survey of outlier detection methodologies” Artificial

Intelligence Review, 22(2), 2004, 85-126.

4. Tan, P. N., Steinbach, M., & Kumar, V. (2019). Introduction to Data Mining.

Pearson.

5. Zhou, Z.-H., Ensemble Methods: Foundations and Algorithms. CRC Press, 2012.

6. Sommer, P., & Paxson, V., “Outside the closed world: On using machine learning

for network intrusion detection”, IEEE European Symposium on Security and

Privacy, 2010, 305-320.

7. Li, W., & Li, Q., “Anomaly detection based on deep learning: A survey”,

International Journal of Information Security, 17(6), (2018), 599-619.

8. Ahmed, M., Mahmood, A. N., & Hu, J. (2016). “A survey of network anomaly

detection techniques”, Journal of Network and Computer Applications, 60, 201-

217.

9. Zhang, Y., & Zheng, Y.,“A deep learning approach for intrusion detection”, Journal

of Information Security and Applications, 42, (2018) 150-157.

10. Kull, M., & Flach, P., “Beyond accuracy: F-measure, the lack of consistency and

the importance of being precise”, Machine Learning, 95(2), (2014), 203-234.

##submission.downloads##

##submissions.published##

2025-04-05