AXBOROT TIZIMLARIDA KIRISHNI ANIQLASH MODELLARINI ISHLAB CHIQISHNING AQLLI USULLARI
##semicolon##
Kalit so‘zlar: Axborot tizimlari, kirishni aniqlash modellar, avtomatik qurish, aqlli usullar, mashinani o‘rganish, chuqur o‘rganish, anomaliyalarga asoslangan model, imzolash asosidagi model, ma’lumot to‘plash, ma’lumotlarni qayta ishlash, modelni baholash va optimallashtirish, xavfsizlik, ruxsatsiz kirish, hujumlardan himoya.##article.abstract##
Annotatsiya: Ushbu maqola axborot tizimlarida kirishni aniqlash modellarini
avtomatik ravishda qurishning aqlli usullarini tahlil qiladi. Kirishni aniqlash
modellarining ikki asosiy turi-imzolash asosida va anomaliyalarga asoslangan-
keltirilgan. Maqolada avtomatik model qurish jarayonining to‘rt asosiy bosqichi:
ma’lumot to‘plash, ma’lumotlarni oldindan qayta ishlash, model qurish va uning
baholanishi va optimallashtirilishi ko‘rib chiqiladi. Mashinani o‘rganish va chuqur
o‘rganish kabi zamonaviy texnologiyalar, shuningdek, natijalarga asoslangan
o‘rganish usullari yordamida kirishni aniqlash samaradorligini oshirish mumkinligi
ta'kidlangan. Ushbu tadqiqot, axborot tizimlarining xavfsizligini kuchaytirish va
ruxsatsiz kirishlarni oldini olishda zamonaviy yechimlarni taklif etadi.
##submission.citations##
Foydalanilgan adabiyotlar.
1. Bishop, C. M., Pattern Recognition and Machine Learning. Springer, 2006.
2. Goodfellow, I., Bengio, Y., & Courville, A., Deep Learning. MIT Press, 2016.
3. Hodge, V. J., & Austin, J., “A survey of outlier detection methodologies” Artificial
Intelligence Review, 22(2), 2004, 85-126.
4. Tan, P. N., Steinbach, M., & Kumar, V. (2019). Introduction to Data Mining.
Pearson.
5. Zhou, Z.-H., Ensemble Methods: Foundations and Algorithms. CRC Press, 2012.
6. Sommer, P., & Paxson, V., “Outside the closed world: On using machine learning
for network intrusion detection”, IEEE European Symposium on Security and
Privacy, 2010, 305-320.
7. Li, W., & Li, Q., “Anomaly detection based on deep learning: A survey”,
International Journal of Information Security, 17(6), (2018), 599-619.
8. Ahmed, M., Mahmood, A. N., & Hu, J. (2016). “A survey of network anomaly
detection techniques”, Journal of Network and Computer Applications, 60, 201-
217.
9. Zhang, Y., & Zheng, Y.,“A deep learning approach for intrusion detection”, Journal
of Information Security and Applications, 42, (2018) 150-157.
10. Kull, M., & Flach, P., “Beyond accuracy: F-measure, the lack of consistency and
the importance of being precise”, Machine Learning, 95(2), (2014), 203-234.